Search results for "recommender systems"

showing 10 items of 23 documents

Semantically-enhanced advertisement recommender systems in social networks

2016

El suministro de recomendaciones en los sistemas sociales lleva ya algún tiempo en el punto de mira tanto de los académicos como de la industria. Los gigantes de las redes sociales como Facebook, LinkedIn, Myspace, etc., están ansiosos por encontrar la bala de plata de la recomendación. Estas aplicaciones permiten a los clientes dar forma a unas determinadas redes sociales a través de sus comunicaciones sociales cooperativas cotidianas. Mientras tanto, la experiencia online actual depende progresivamente de la asociación social. Una de las principales preocupaciones en la red social es establecer un plan de negocio exitoso para obtener más beneficios de la red social. Hacer un negocio en ca…

:CIENCIAS TECNOLÓGICAS [UNESCO]Knowledge managementSocial networkbusiness.industryComputer sciencesemantic technologies020206 networking & telecommunicationsAdvertising02 engineering and technologyRecommender systemUNESCO::CIENCIAS TECNOLÓGICASProfit (economics)World Wide WebSilver bulletSocial systemSocial cooperative0202 electrical engineering electronic engineering information engineeringsocial networkBusiness planrecommender systemsbusiness
researchProduct

Ranking-Oriented Collaborative Filtering: A Listwise Approach

2016

Collaborative filtering (CF) is one of the most effective techniques in recommender systems, which can be either rating oriented or ranking oriented. Ranking-oriented CF algorithms demonstrated significant performance gains in terms of ranking accuracy, being able to estimate a precise preference ranking of items for each user rather than the absolute ratings (as rating-oriented CF algorithms do). Conventional memory-based ranking-oriented CF can be referred to as pairwise algorithms. They represent each user as a set of preferences on each pair of items for similarity calculations and predictions. In this study, we propose ListCF, a novel listwise CF paradigm that seeks improvement in bot…

Computer science02 engineering and technologyRecommender systemcomputer.software_genreMachine learningSet (abstract data type)020204 information systems0202 electrical engineering electronic engineering information engineeringCollaborative filteringDivergence (statistics)ranking-oriented collaborative filteringta113business.industryGeneral Business Management and AccountingComputer Science ApplicationsRankingcollaborative filteringBenchmark (computing)Probability distribution020201 artificial intelligence & image processingPairwise comparisonArtificial intelligenceData miningrecommender systemsbusinesscomputerInformation SystemsACM Transactions on Information Systems
researchProduct

Semantic technologies for industry: From knowledge modeling and integration to intelligent applications

2013

Artificial Intelligence technologies are growingly used within several software systems ranging from Web services to mobile applications. It is by no doubt true that the more AI algorithms and methods are used the more they tend to depart from a pure "AI" spirit and end to refer to the sphere of standard software. In a sense, AI seems strongly connected with ideas, methods and tools that are not (yet) used by the general public. On the contrary, a more realistic view of it would be a rich and pervading set of successful paradigms and approaches. Industry is currently perceiving semantic technologies as a key contribution of AI to innovation. In this paper a survey of current industrial expe…

Computer scienceKnowledge RepresentationRecommender systemcomputer.software_genreNLPIndustrial ApplicationsWorld Wide WebKnowledge modelingSemantic TechnologiesArtificial Intelligencesemantic searchontologiesKnowledge Representation; Semantic Technologies; Industrial Applicationsinformation retrievalSoftware systembusiness.industrySemantic searchSketchBPMSemantic technologyApplications of artificial intelligenceNLP information retrieval semantic search recommender systems ontologies BPMrecommender systemsWeb servicebusinesscomputerIntelligenza Artificiale
researchProduct

Watch This! The Influence of Recommender Systems and Social Factors on the Content Choices of Streaming Video on Demand Consumers

2021

Streaming Video-on-demand (SVOD) services are getting increasingly popular. Current research, however, lacks knowledge about consumers’ content decision processes and their respective influencing factors. Thus, the work reported on in this paper explores socio-technical interrelations of factors impacting content choices in SVOD, examining the social factors WOM, eWOM and peer mediation, as well as the technological influence of recommender systems. A research model based on the Theory of Reasoned Action and the Technology Acceptance Model was created and tested by an n = 186 study sample. Results show that the quality of a recommender system and not the social mapping functionality is the …

Computer scienceStreaming Video on Demandmedia_common.quotation_subjectsuosittelujärjestelmätpeer mediationSample (statistics)Advertisingtechnology influencekuluttajakäyttäytyminenRecommender systemTheory of reasoned actionMediation(e)word of mouthTechnology acceptance modelQuality (business)recommender systemsvertaisryhmätContent (Freudian dream analysis)social influencesuoratoistopalvelutmedia_commonSocial influence
researchProduct

A Context-Aware Mobile Solution for Assisting Tourists in a Smart Environment

2017

Computer sciencebusiness.industryInternet privacyRecommender Systems020206 networking & telecommunicationsContext (language use)02 engineering and technologyRecommender systemContext Awareness; E-Tourism; Recommender SystemsE-Tourism020204 information systemsAdaptive system0202 electrical engineering electronic engineering information engineeringContext awarenessSmart environmentbusinessContext AwarenessProceedings of the 50th Hawaii International Conference on System Sciences (2017)
researchProduct

A Hybrid Recommender System for Cultural Heritage Promotion

2021

Assisting users during their cultural trips is paramount in promoting the heritage of a territory. Recommender Systems offer the automatic tools to guide users in their decision process, by maximizing the adherence of the proposed contents with the particular preferences of every single user. However, traditional recommendation paradigms suffer from several drawbacks which are exacerbated in Cultural Heritage scenarios, due to the extremely wide range of users behaviors, which may also depend on their different educational backgrounds. In this paper, we propose a Hybrid recommender system which combines the four most common recommendation paradigms, namely collaborative filtering, popularit…

Cultural heritageWorld Wide WebSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniPromotion (rank)Computer sciencemedia_common.quotation_subjectCollaborative filteringTRIPS architectureRecommender systemDecision processCultural heritage Recommender systemsPopularitymedia_common
researchProduct

CitySearcher: A City Search Engine For Interests

2017

We introduce CitySearcher, a vertical search engine that searches for cities when queried for an interest. Generally in search engines, utilization of semantics between words is favorable for performance improvement. Even though ambiguous query words have multiple semantic meanings, search engines can return diversified results to satisfy different users' information needs. But for CitySearcher, mismatched semantic relationships can lead to extremely unsatisfactory results. For example, the city Sale would incorrectly rank high for the interest shopping because of semantic interpretations of the words. Thus in our system, the main challenge is to eliminate the mismatched semantic relationsh…

Feature engineeringWord embeddingkaupungitComputer scienceInformation needs02 engineering and technologysemanttinen webSemanticscomputer.software_genresearch enginesSearch enginesemantic web020204 information systems0202 electrical engineering electronic engineering information engineeringhakuohjelmatWord2vectowns and citiesta113Information retrievalbusiness.industryRank (computer programming)Semantic searchsuosittelujärjestelmätVertical search020201 artificial intelligence & image processingLearning to rankArtificial intelligencerecommender systemsbusinesscomputerNatural language processing
researchProduct

Kolaboratīvā filtrēšana ieteikumu sistēmās

2021

Darbs bija veltīts kolaboratīvai filtrēšanai ieteikumu sistēmās. Tika raksturota kolaboratīvās filtrēšanas metode, apskatīti galvēnie izaicinājumi, piemērām, datu nepietiekamība, mērogojamība u.c.. Sīkāk tika apskatīta uz atmiņu balstītas kolaboratīvās filtrēšanas metodes, uz modeļiem balstītas kolaboratīvās filtrēšanas metodes, hibrīdas kolaboratīvās filtrēšanas metodes un kolaboratīvās filtrēšanas novērtēšanas metrika. Praktiski tika apskatīts datu piemērs ar uz saturu balstītiem ieteikumiem un uz atmiņu balstītam kolaboratīvās filtrēšanas metodēm.

Kolaboratīva filtrēšanaCollaborative filteringMatemātikaRecommender systemsIeteikumu sistēmas
researchProduct

Information indexing and recommendation : toward a precise description if items by an ontological approach based on business domain modeling : applic…

2015

Effective management of large amounts of information has become a challenge increasinglyimportant for information systems. Everyday, new information sources emerge on the web. Someonecan easily find what he wants if (s)he seeks an article, a video or a specific artist. However,it becomes quite difficult, even impossible, to have an exploratory approach to discover newcontent. Recommender systems are software tools that aim to assist humans to deal withinformation overload. The work presented in this Phd thesis proposes an architecture for efficientrecommendation of news. In this document, we propose an architecture for efficient recommendationof news articles. Our ontological approach relie…

[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]OntologySémantiqueOntologieEconomyNewsÉconomieReasonerActualitésKnowledge base[ INFO.INFO-DB ] Computer Science [cs]/Databases [cs.DB]Base de connaissancesSystèmes de recommandationRaisonneurRecommender systems[INFO.INFO-DB] Computer Science [cs]/Databases [cs.DB]Semantic
researchProduct

AN ONTOLOGY-BASED APPROACH TO PROVIDE PERSONNALIZED RECOMMENDATIONS USING A STOCHASTIC ALGORITHM

2011

International audience; The use of personalized recommender systems to assist users in the selection of products is becoming more and more popular and wide-spread. The purpose of a recommender system is to provide the most suitable items from an knowledge base, according the user knowledge, tastes, interests, ... These items are generally proposed as ordered lists. In this article, we propose to combine works from adaptive hypermedia systems, semantic web and combinatory to create a new kind of recommender systems suggesting combinations of items corresponding to the user.

[INFO.INFO-OH] Computer Science [cs]/Other [cs.OH]semantic web[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH][ INFO.INFO-OH ] Computer Science [cs]/Other [cs.OH]Recommender systemsstochastic processesuser modellingstochastic processes.adaptive hypermedia systemsinformation filtering
researchProduct